CSCI 210: Computer Architecture
Lecture 31: Control Hazards

Stephen Checkoway
Slides from Cynthia Taylor

CS History: Branch Prediction

The IBM Stretch implemented “predict taken” branch prediction in the
1950s

Two-bit branch prediction was developed at Livermore Labs in 1977, and
independently at the CDCin 1979

MIPS R2000 was introduced in January 1986, and did “not-taken” branch
prediction

— This was not a big performance hit because of the use of the branch-delay slot
and the short pipeline

In the 1990s, the introduction of super-scalar computers made branch
prediction more important, and the Intel Pentium, DEC Alpha, MIPS R8000,
and the IBM POWER all had 1 and 2-bit branch predictors

Stalling the pipeline
Given this pipeline where branches are resolved by the ALU and PC is updated in the
MEM stage — let’s assume we stall until we know the branch outcome. How many

cycles will you lose per branch?

xc=Z @

LE:(IMEM
e LhalEMN\.’B

IF/ID . -
Add result
; Shift Branch
4 left 2 — v | e
« usr S5
— [=
g Read 5 2
PC=t=s| Address 2 register 1 Read [\ = &
= — +
S I t. I = Read data 1 - N &
: < register 2 = | =
e eC |On CyC es Instruction > o Registers Read
memory Wirite dataz [Address Read 1
register data
u Data M
Write memary M
A O | data C)'(
Wirite
data
B 1 Instruction
16 32 6
M5 o Sign N ALU lemReac
N Tlextend N “leontro Memiead
C 2 Instruction
[20 18]
0 ALUOp
D 3 u
Instruction u
15 1] *
1
E 4 o o RegDst o o

Stalling for Branch Hazards

cC1 CC2 CC3 CCa CC5 CC6 CC7 CC8

}

beq S4, SO, there| IM

Reg

Reg > DM
and $12, 52, S5 \ IM |——| Reg ; DM

or ... M Reg >\k

add ... M Reg 97

SW ...

Stalling for Branch Hazards

* Seems wasteful, particularly when the branch isn’t taken.
* Makes all branches cost 4 cycles.

 What if we just assume the branch isn’t taken?

Assume Branch Not Taken

works pretty well when you’re right

beq $4, SO, there

and $12, 52, S5

or ...

add ...

SW ...

CcC1

IM

CC8

CcC2 Cc3 CC4 CC5 CCé6 Ccc7
Reg ;’7 DM Reg
IM [——| Reg >¥ DM Reg
IM Reg \\;’7 DM Reg
IM \ Reg >\\ DM
-

Reg

Assume Branch Not Taken

Flush the pipeline when you’re wrong; same performance as

Sta | I i N g CcCc1 CcC2 CC3 Ccc4 CC5 CCé6 cCc7 CC8

beq $4, SO, there| IM Reg 9 DM Reg

and $12, $2, $5 IM |——| Reg
or ... IM
add ...

there: sub $12, $4, S2

Reg ;'7

Stalling the pipeline
Let’s improve the pipeline so we move branch resolution to Decode + assume

branches are not taken. How many cycles would we lose then on a taken branch?

and $12, $2, $5 beq $1, $3, 7 i sub$10,$4,$8 before<t> 1 before<2>
IF.Flush i
Tazard "\ E
detection | '
unit / '
IDJEX
- MEI\j/WB
4 wB
Selection | cycles
i M
A O | Data 3
memory
B 1 - J
C 2
D 3 |
Forwarding :
E 4 unit s .
Clock 3

Example: Branch Taken

and $12, $2, $5 beq $1, $3,7 . sub$10,$4,$8 before<1> ' before<2>
IF.Flush E E E E
: Hazard ,' : :
detection] : X :
__unit J : \ :
1 IDJEX ! !
EX/MEM |
i 78 MEM/WB
| ’ 0 _..._
»V 72

Data
memory

xc=

L
Forwarding :

unit /==:

Clock 3

Example: Branch Taken

lw $4, 50($7) Bubble (nop)

IF.Flush

before<1>

beq $1, $3, 7 sub $10, . ..

Hazard
detection

\ unit /

T

i

Shift

Registers

- - M
u
Data X

memory

-

(o)

Forwarding
unit . 2

Clock 4

Branch Hazards — Assume Not Taken

* Great if most of your branches aren’t taken.

 What about loops which are taken 95% of the time?

— We would like the option of assuming not taken for some branches,
and taken for others, depending on what they usually do

Branch Hazards — Predicting Taken

CC1 CC2 CC3 Ccc4 CC5 CCé CC7 CC8
beq $2,$1, here | IM Reg >E DM Reg
here: lw IM Reg >> DM Reg
Required information to predict branch outcomes
without stalls: knowledge
: . A 2,3
1. An instruction is a branch before decode B 1213
2. The target of the branch (where it branches to) C 1,2
3. Values in the registers the branch will compare D 2
E None of the

above

Branch Target Buffer

* Keeps track of the PCs of recently _4002 p -8C
X X

seen branches and their targets. 040188 P —

e Consult during Fetch (in parallel
with Instruction Memory read) to

determine:
— Is this a branch?
— If so, what is the target

Branch Hazards — Three Approaches

 Static policy:
— Forward branches (if statements) predict not taken
— Backward branches (loops) predict taken

* Dynamic prediction

* Branch Delay Slots

Branch Delay Slot

beq $4, SO, there | IM Reg \ ;'7 DM Reg

CC8

and $12, $2, S5 IM Reg 9 DM Reg
there: or ... IM Reg 9 DM Reg

add ... IM Reg| > }—{DM|—
SW ... IM Reg > |_

Branch delay slot instruction (next instruction after a branch) is executed
even if the branch is taken.

Which instructions could we put in the branch
delay slot?

1| add S5, $3, 57 Selection | Safe
2| add $9, 1, $3 - Instructions
3| sub S6, S1, S4 A 2
4| and $7, S8, S2
5| beq S6, $7, there B 1,2
nop /* branch delayslot */
6| add S9, S1, S2 C 2,6
7| sub $2, %9, $5
D 1,2,7,8
there:
8| mult $2, $10, $9 E None of the

above

uvi »h W N B

o))

Filling the branch delay slot

add $5, $3, $7
add $9, $1, $3
sub $6, $1, $4
and $7, $8, $2
beq $6, $7, there

No-S7 overwritten
Safe, S1 and S3 are fine
No-S6

No-S7

nop # branch delay slot

add $9, $1, $2
sub $2, $9, $5

there:
mult $2, $10, $9

Not safe (S9 on taken path)
Not safe (needs $9 not yet produced)

Not safe (S2 is used before overwritten on not
taken path)

Filling the branch delay slot

* The branch delay slot is only
useful if we can find something
to put there.

* If the we can’t find anything, we
must put a nop to ensure
correctness.

a. From before

add $s1, $s2, $s3

if $s2 = 0 then ——

Delay slot

b. From target

sub $t4, $t5, $t6 <

add $s1, $s2, $s3

if $s1 = 0then —

Delay slot

Becomes

if $s2 = 0 then ——

add $s1, $s2, $s3

Becomes

—

add $s1, $s2, $s3

if $s1 = 0 then ——

sub $t4, $t5, $t6

¢. From fall through

add $s1, $s2, $s3

if $s1 = 0 then ——

Delay slot

sub $t4, $t5, $t6

Becomes

add $s1, $s2, $s3

if $s1 = 0then ——

sub $t4, $t5, $t6

Branch Delay Slots

* This works great for this implementation of the architecture.

 What about the MIPS R10000, which has a 5-cycle branch
penalty, and executes 4 instructions per cycle???

Dynamic Branch Prediction

e Can we guess the outcome of branches?

* What should we base that guess on?

1-bit Branch Predictor

program counter

L |

Pattern History
Talcﬂe (PHT)

Every time branch is taken, set bit to 1, untaken, 0.

v

[~lo]-]

for (i=0;i<10;i++) {

}

add Si, Si, #1
beq Si, #10, loop

Assume we start with our 1-bit predictor at 1,
for Taken, and change it to O whenever the

branch is not taken. How accurate will it be for
the branch pattern TTNTTNTT

. 3/8
4/8
5/8
. 8/8
None of the above

m o 0O WP

Two-bit predictors give better loop prediction

Strongly Taken
11
PHT P
branch address for (i=0;i<10;i++) {
L
» 01 Weakly Taken }

10 A

|

add Si, Si, #1
beq Si, #10, loop

Weakly Not Taken
01

Decrement when not taken

Increment when taken

Strongly Not Taken
00

Suppose we have the following branch pattern.
What is the accuracy of a 1-bit and 2-bit branch

predictors. Assume initial values of 1 (1-bit) and
(10) 2-bit.

TTNTN

1 bit 2 bit

2/5 2/5
3/5 2/5
2/5 3/5
1/5 4/5
. None of the above

Decrement when not taken

O O ™ >

m

Increment when taken

Branch Prediction

* Latest branch predictors are significantly more sophisticated,
using more advanced correlating techniques, larger structures,
and even Al techniques (not generative Al!)

* Use patterns of branches (local history) and recent other
branch history (global history) to make predictions
— E.g., “gshare” predictor takes a global branch history and XORs that

with the PC to look up a 2-bit saturating counter in the PHT (pattern
history table). Works shockingly well

Gshare: a popular predictor

PHT
The Global history
register and selected
bits of the PC are
= XORed to provide the
Global history register *&\\ index in a single PHT
“{xorl’
.//-
CSE %86 Spring 00 36

Slide shamelessly borrowed from CSE 586 at the University of Washington, spring 2000

Putting it all together.

For a given program on our 5-stage MIPS
pipeline processor:

e 20% of instructions are loads, 50% of

instructions following a load are arithmetic .
instructions depending on the load. Recall Pl
load-use hazards are a 1 cycle stall. A 0.76

e 20% of instructions are branches. Using B 0.9
dynamic branch prediction, we achieve 80% C 10
prediction accuracy. Mispredicted branches
are a 1 cycle stall. - Ll

E None of the
above

What is the CPI of your program?
Assume a base CPI of 1.

Questions on Branch Prediction/Pipelining?

Control Hazards — Key Points

e Control (or branch) hazards arise because we must fetch the
next instruction before we know if we are branching or where
we are branching.

* Control hazards are detected in hardware.
* We can reduce the impact of control hazards through:

— early detection of branch address and condition

— branch prediction
— branch delay slots (but this is a bad idea)

Pipelining — Key Points

Pipelining focuses on improving instruction throughput, not
individual instruction latency.

Data hazards can be handled by hardware or software — but
most modern processors have hardware support for stalling
and forwarding.

Control hazards can be handled by hardware or software — but
most modern processors use Branch Target Buffers and
advanced dynamic branch prediction to reduce the hazard.

ET = IC*CPI*CT

Reading

e Next lecture: Caches
— Section 6.2

	Slide 1: CSCI 210: Computer Architecture Lecture 31: Control Hazards
	Slide 3: CS History: Branch Prediction
	Slide 4
	Slide 5: Stalling for Branch Hazards
	Slide 6: Stalling for Branch Hazards
	Slide 7: Assume Branch Not Taken
	Slide 8: Assume Branch Not Taken
	Slide 9
	Slide 10: Example: Branch Taken
	Slide 11: Example: Branch Taken
	Slide 12: Branch Hazards – Assume Not Taken
	Slide 13: Branch Hazards – Predicting Taken
	Slide 14: Branch Target Buffer
	Slide 15: Branch Hazards – Three Approaches
	Slide 16: Branch Delay Slot
	Slide 17: Which instructions could we put in the branch delay slot?
	Slide 18: Filling the branch delay slot
	Slide 19: Filling the branch delay slot
	Slide 22: Branch Delay Slots
	Slide 23: Dynamic Branch Prediction
	Slide 24: 1-bit Branch Predictor
	Slide 25: Assume we start with our 1-bit predictor at 1, for Taken, and change it to 0 whenever the branch is not taken. How accurate will it be for the branch pattern T T N T T N T T
	Slide 26: Two-bit predictors give better loop prediction
	Slide 27
	Slide 28: Branch Prediction
	Slide 29
	Slide 30: Putting it all together.
	Slide 31: Questions on Branch Prediction/Pipelining?
	Slide 32: Control Hazards — Key Points
	Slide 33: Pipelining — Key Points
	Slide 34: Reading

