
CSCI 210: Computer Architecture

Lecture 31: Control Hazards

Stephen Checkoway

Slides from Cynthia Taylor

CS History: Branch Prediction

• The IBM Stretch implemented “predict taken” branch prediction in the
1950s

• Two-bit branch prediction was developed at Livermore Labs in 1977, and
independently at the CDC in 1979

• MIPS R2000 was introduced in January 1986, and did ”not-taken” branch
prediction
– This was not a big performance hit because of the use of the branch-delay slot

and the short pipeline

• In the 1990s, the introduction of super-scalar computers made branch
prediction more important, and the Intel Pentium, DEC Alpha, MIPS R8000,
and the IBM POWER all had 1 and 2-bit branch predictors

Stalling the pipeline

Selection cycles

A 0

B 1

C 2

D 3

E 4

Given this pipeline where branches are resolved by the ALU and PC is updated in the
MEM stage – let’s assume we stall until we know the branch outcome. How many

cycles will you lose per branch?

Stalling for Branch Hazards

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Bubble BubbleBubble

Stalling for Branch Hazards

• Seems wasteful, particularly when the branch isn’t taken.

• Makes all branches cost 4 cycles.

• What if we just assume the branch isn’t taken?

Assume Branch Not Taken

works pretty well when you’re right

beq $4, $0, there

and $12, $2, $5

or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Assume Branch Not Taken

Flush the pipeline when you’re wrong; same performance as
stalling

beq $4, $0, there

and $12, $2, $5

or ...

add ...

there: sub $12, $4, $2

IM Reg

IM Reg

IM

IM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Flush

Flush

Flush

Let’s improve the pipeline so we move branch resolution to Decode + assume

branches are not taken. How many cycles would we lose then on a taken branch?

Stalling the pipeline

Selection cycles

A 0

B 1

C 2

D 3

E 4

Example: Branch Taken

Example: Branch Taken

Branch Hazards – Assume Not Taken

• Great if most of your branches aren’t taken.

• What about loops which are taken 95% of the time?

– We would like the option of assuming not taken for some branches,
and taken for others, depending on what they usually do

Branch Hazards – Predicting Taken

IM Reg

A
LU DM Reg

IM Reg

A
LU DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

beq $2, $1, here

here: lw

Required information to predict branch outcomes
without stalls:

1. An instruction is a branch before decode

2. The target of the branch (where it branches to)

3. Values in the registers the branch will compare

Selection Required

knowledge

A 2, 3

B 1, 2, 3

C 1, 2

D 2

E None of the

above

Branch Target Buffer

• Keeps track of the PCs of recently
seen branches and their targets.

• Consult during Fetch (in parallel
with Instruction Memory read) to
determine:

– Is this a branch?

– If so, what is the target

PC Target

0x40024 0x4018C

0x40188 0x40028

⋮ ⋮

Branch Hazards – Three Approaches

• Static policy:

– Forward branches (if statements) predict not taken

– Backward branches (loops) predict taken

• Dynamic prediction

• Branch Delay Slots

Branch Delay Slot

beq $4, $0, there

and $12, $2, $5

there: or ...

add ...

sw ...

IM Reg DM Reg

IM Reg

IM Reg DM

IM Reg DM Reg

IM Reg DM Reg

CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8

Branch delay slot instruction (next instruction after a branch) is executed
even if the branch is taken.

Which instructions could we put in the branch
delay slot?

1 add $5, $3, $7

2 add $9, $1, $3

3 sub $6, $1, $4

4 and $7, $8, $2

5 beq $6, $7, there

 nop /* branch delay slot */

6 add $9, $1, $2

7 sub $2, $9, $5

 ...

 there:

8 mult $2, $10, $9

 …

Selection Safe

instructions

A 2

B 1,2

C 2,6

D 1,2,7,8

E None of the

above

Filling the branch delay slot

1 add $5, $3, $7

2 add $9, $1, $3

3 sub $6, $1, $4

4 and $7, $8, $2

5 beq $6, $7, there

 nop # branch delay slot

6 add $9, $1, $2

7 sub $2, $9, $5

 ...

 there:

8 mult $2, $10, $9

 …

No-$7 overwritten

Safe, $1 and $3 are fine

No-$6

No-$7

Not safe ($9 on taken path)

Not safe (needs $9 not yet produced)

Not safe ($2 is used before overwritten on not
taken path)

Filling the branch delay slot

• The branch delay slot is only
useful if we can find something
to put there.

• If the we can’t find anything, we
must put a nop to ensure
correctness.

Branch Delay Slots

• This works great for this implementation of the architecture.

• What about the MIPS R10000, which has a 5-cycle branch
penalty, and executes 4 instructions per cycle???

Dynamic Branch Prediction

• Can we guess the outcome of branches?

• What should we base that guess on?

1-bit Branch Predictor

1
0
1

program counter

for (i=0;i<10;i++) {
...
...
}

...

...
add $i, $i, #1
beq $i, #10, loop

Every time branch is taken, set bit to 1, untaken, 0.

Pattern History
Table (PHT)

Assume we start with our 1-bit predictor at 1,
for Taken, and change it to 0 whenever the
branch is not taken. How accurate will it be for
the branch pattern T T N T T N T T

A. 3/8

B. 4/8

C. 5/8

D. 8/8

E. None of the above

Two-bit predictors give better loop prediction

for (i=0;i<10;i++) {
...
...
}

...

...
add $i, $i, #1
beq $i, #10, loop

Strongly Taken
11

Weakly Taken
10

Weakly Not Taken
01

Strongly Not Taken
00

D
e
cr

e
m

e
n
t

w
h
en

 n
o
t

ta
ke

n

In
cr

e
m

e
n
t

w
h
e
n
 t

a
ke

n

branch address

01

PHT

Suppose we have the following branch pattern.
What is the accuracy of a 1-bit and 2-bit branch
predictors. Assume initial values of 1 (1-bit) and
(10) 2-bit.

 T T N T N

Strongly Taken
11

Weakly Taken
10

Weakly Not Taken
01

Strongly Not Taken
00

D
e
cr

e
m

e
n
t

w
h
en

 n
o
t

ta
ke

n

In
cr

e
m

e
n
t

w
h
e
n
 t

a
ke

n

1 bit 2 bit

A 2/5 2/5

B 3/5 2/5

C 2/5 3/5

D 1/5 4/5

E. None of the above

Branch Prediction

• Latest branch predictors are significantly more sophisticated,
using more advanced correlating techniques, larger structures,
and even AI techniques (not generative AI!)

• Use patterns of branches (local history) and recent other
branch history (global history) to make predictions

– E.g., “gshare” predictor takes a global branch history and XORs that
with the PC to look up a 2-bit saturating counter in the PHT (pattern
history table). Works shockingly well

Slide shamelessly borrowed from CSE 586 at the University of Washington, spring 2000

Putting it all together.

For a given program on our 5-stage MIPS
pipeline processor:
• 20% of instructions are loads, 50% of

instructions following a load are arithmetic
instructions depending on the load. Recall
load-use hazards are a 1 cycle stall.

• 20% of instructions are branches. Using
dynamic branch prediction, we achieve 80%
prediction accuracy. Mispredicted branches
are a 1 cycle stall.

What is the CPI of your program?
Assume a base CPI of 1.

Selection CPI

A 0.76

B 0.9

C 1.0

D 1.14

E None of the

above

Questions on Branch Prediction/Pipelining?

Control Hazards — Key Points

• Control (or branch) hazards arise because we must fetch the
next instruction before we know if we are branching or where
we are branching.

• Control hazards are detected in hardware.

• We can reduce the impact of control hazards through:

– early detection of branch address and condition

– branch prediction

– branch delay slots (but this is a bad idea)

Pipelining — Key Points

• Pipelining focuses on improving instruction throughput, not
individual instruction latency.

• Data hazards can be handled by hardware or software – but
most modern processors have hardware support for stalling
and forwarding.

• Control hazards can be handled by hardware or software – but
most modern processors use Branch Target Buffers and
advanced dynamic branch prediction to reduce the hazard.

• ET = IC*CPI*CT

Reading

• Next lecture: Caches

– Section 6.2

	Slide 1: CSCI 210: Computer Architecture Lecture 31: Control Hazards
	Slide 3: CS History: Branch Prediction
	Slide 4
	Slide 5: Stalling for Branch Hazards
	Slide 6: Stalling for Branch Hazards
	Slide 7: Assume Branch Not Taken
	Slide 8: Assume Branch Not Taken
	Slide 9
	Slide 10: Example: Branch Taken
	Slide 11: Example: Branch Taken
	Slide 12: Branch Hazards – Assume Not Taken
	Slide 13: Branch Hazards – Predicting Taken
	Slide 14: Branch Target Buffer
	Slide 15: Branch Hazards – Three Approaches
	Slide 16: Branch Delay Slot
	Slide 17: Which instructions could we put in the branch delay slot?
	Slide 18: Filling the branch delay slot
	Slide 19: Filling the branch delay slot
	Slide 22: Branch Delay Slots
	Slide 23: Dynamic Branch Prediction
	Slide 24: 1-bit Branch Predictor
	Slide 25: Assume we start with our 1-bit predictor at 1, for Taken, and change it to 0 whenever the branch is not taken. How accurate will it be for the branch pattern T T N T T N T T
	Slide 26: Two-bit predictors give better loop prediction
	Slide 27
	Slide 28: Branch Prediction
	Slide 29
	Slide 30: Putting it all together.
	Slide 31: Questions on Branch Prediction/Pipelining?
	Slide 32: Control Hazards — Key Points
	Slide 33: Pipelining — Key Points
	Slide 34: Reading

